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We present a theory of momentum-space local density of states �LDOS� maps N�q ,�� in graphene. The
LDOS map has both intravalley contributions centered near zero momentum and reciprocal-lattice vectors and
intervalley contributions displaced by the wave vector K�-K which connects graphene’s two distinct Dirac
points. Using graphene’s Dirac equation chiral quasiparticle continuum model, we obtain analytic results which
explain the qualitative differences between these two LDOS-map features. We comment on the sensitivity of
both N�q ,�� features to the mix of atomic length scale and smooth disorder sources present in a particular
graphene sample.
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I. INTRODUCTION

Graphene, a honeycomb lattice of carbon atoms, is a
recently realized1 two-dimensional �2D� electron system
�2DES� with a variety of unique properties.2,3 This intriguing
electronic system is now being actively explored both ex-
perimentally and theoretically. Graphene is described at low
energies by a 2D massless-Dirac wave equation in which the
role of spin is assumed by a pseudospin which represents the
two atoms in its unit cell. Many of the unusual properties of
graphene sheets, including the shift in the densities at which
quantum Hall4,5 plateaus occur, follow from momentum-
space Berry phases6,7 associated with the pseudospin �sublat-
tice� degree of freedom. Graphene quasiparticles have
definite pseudospin chirality, i.e., definite projection of
pseudospin along momentum measured from one of the two
independent Brillouin-zone �BZ� corner points at which the
gap vanishes. The experimental observation of the quantum
Hall effect in graphene was an important demonstration that
these 2DESs behave, at least in some respects, very nearly in
the ideal way anticipated by Wallace8 many years ago in his
early analysis of the electronic structure of graphite.
Wallace8 realized that the states near the Fermi level of a
graphene sheets should separate carbon �-orbital bonding
and antibonding bands and that the gap between these bands
would vanish at two points in the honeycomb lattice Bril-
louin zone, the Dirac points of graphene. Experiments have
confirmed this simple picture in most respects, something
that was not a priori obvious given the potential for either
electron-electron interactions or disorder to alter physical
properties. Indeed the quantum Hall effect, which can be
viewed as a topological property of the 2DES, tends to be
forgiving in details. In view of the tremendous interest in
studying graphene sheets and characterizing their disorder,
there is strong motivation for expanding the comparison
between experimental and theoretical analyses based on
Wallace’s �-band model8 to new observables.

In this paper we present theoretical predictions for the
local density of states �LDOS� of weakly disordered
graphene sheets, a quantity which can be measured using
scanning-tunneling microscopy �STM�. Renewed apprecia-
tion of the ability of this type of measurement to shed light
on the character of the disorder in a sample and also on

underlying clean system electronic properties has emerged
from a highly successful series of studies of cuprate
superconductors.9 The experiments rely on the ability to
make stable atomic-resolution STM scans of the LDOS as a
function of energy � over a large real-space field of view.
�The energy � is varied by changing the bias voltage be-
tween the STM tip and the sample.� Preliminary experimen-
tal data on graphene sheets are already available,10 and we
can expect that further refinements in sample quality and
experimental technique will enable detailed analysis which
will extract much useful information. Previous theoretical
work11–15 has discussed the numerical construction of LDOS
maps from graphene’s honeycomb lattice �-band tight-
binding model. Analytic expressions for the LDOS modula-
tions were obtained by Bena12 through an expansion in pow-
ers of 1 /r of the amplitudes in real space. Peres et al.16

looked at impurity-induced localized states at low energies in
the T-matrix approximation. In this theoretical contribution
we focus on the Dirac equation continuum limit of the
�-band model, from which it is possible to obtain analytic
results which we believe can contribute to a more meaning-
ful interpretation of experimental LDOS maps.

In this paper we suggest that it can be useful to measure A
and B sublattice LDOS maps separately, something which is
possible in principle since the experiments have atomic res-
olution. As we explain, the difference signal �which will nor-
mally be weak� and the sum signal are complementary
probes of a sample and its disorder. With this method one is
able to extract more information and consequently identify
the type of disorder in the system.

Because of the disorder always present in real materials
the LDOS never has the lattice periodicity. When Fourier
transformed to momentum space, the additional
modulations17 reveal the dominant momentum transfers be-
tween quasiparticle states at energy � �measured from the
Dirac point� and hence map out the electronic structure. In a
superconductor the Bogoliubov–de Gennes coherence fac-
tors, which specify the particle and hole amplitudes in BCS
quasiparticles, help us to determine the relative probability of
scattering between different constant energy surface
segments.18,19 As we shall see shortly, the pseudospin mixing
present in graphene quasiparticle excitations plays a similar
role. At small � the momentum transfers in graphene are
naturally classified as intravalley �small momentum transfer
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close to the same Brillouin-zone corner� or intervalley �large
momentum transfer from one valley to the other�. We will
see that both intravalley and intervalley scattering amplitudes
are influenced by pseudospin chirality, but because the two
valleys have opposite chirality their STM momentum-space
maps differ qualitatively.

Our paper is organized as follows. In Sec. II we briefly
summarize the weak-scattering analysis which has been used
to provide STM momentum-space maps with a simple and
consequential interpretation. In Secs. III and IV we apply the
analysis first to a graphene �-orbital tight-binding model and
then to the low energy Dirac equation continuum model. The
Dirac equation model allows many elements of the calcula-
tion to be carried out analytically, enabling us to provide
more guidance on the qualitative interpretation of STM
momentum-space maps. We conclude in Sec. V with a brief
summary and discussion.

II. WEAK-DISORDER APPROXIMATION

A. Real-space LDOS maps

The influence of a scattering potential V�r� on the LDOS
of an otherwise clean system can be described by expanding
the Green’s function in powers of V�r�.20 LDOS maps are
most revealing when the scattering potential, V�r�, is weak,
justifying truncation at first order—the Born approximation.
For a simple parabolic band, this approximate treatment
leads to the well-known Freidel oscillations.21 In a LDOS-
map experiment, weak disorder provides an electronic sys-
tem with its own weakly coupled probe one which is able to
provide momentum resolution of single-particle properties. It
is generally assumed that the weak-coupling approximation
is at least qualitatively valid whenever sharp features appear
experimentally in the momentum-space maps that we will
describe below. Maps similar to the ones we calculate later in
this paper should emerge from LDOS-map studies of
graphene if samples of sufficiently high quality can be pre-
pared.

To model graphene we consider the following perturbed
Hamiltonian:

H = H0 + Hv,

Hv = �
r

V�r�n�r� , �1�

where the unperturbed Hamiltonian H0 is either the �-band
tight-binding8,22 model for graphene or its Dirac continuum
limit.23 The Dyson equation for the Green’s function is then

G�r,r�,�� = G0�r� − r,�� +� dsG0�s − r,��V�s�G�s,r�,�� ,

�2�

where G0�r�−r ,�� is the unperturbed Green’s function of a
clean-limit graphene quasiparticle at energy �� and
G�r ,r� ,�� is the inhomogeneous disordered system Green’s
function which includes the effect of scattering by the poten-
tial V�r�. In order to describe a non-Bravais lattice, it is con-

venient to write the Hamiltonian and therefore the Green’s
function as 2�2 matrices with the argument r defined only
on the Bravais lattice. We define the vector r to lie on the A
sublattice and the B sublattice atoms are obtain through a
shift by the vector �. For on-site disorder V is diagonal and
its elements specify the A and B site potentials in a particular
unit cell. It is convenient to write

V�r� � V0�r��0 + V3�r��3. �3�

�Here V0+V3=VA, V0−V3=VB, �0 is the 2�2 identity ma-
trix, and �3 is the diagonal Pauli matrix.� Disorder sources
which are smooth on an atomic scale, for example, smooth
ripples24–26 or Coulomb potentials from remote ionized
impurities,27–29 will contribute only to V0, whereas atomic
scale disorder sources,30 such as impurity atoms or vacan-
cies, will have large differences between VA and VB and
contribute to both V0 and V3. The local density of states
�DOS� at position r and energy ��, N�r ,��, is given by

N�r,�� = −
1

�
� �Im�GAA�r,r,��� on A site

Im�GBB�r,r,��� on B site.
	 �4�

B. Momentum-space LDOS maps

The zeroth-order term in the potential expansion of the
Green’s function gives the clean-limit LDOS which is peri-
odic and therefore has nonzero Fourier components only at
reciprocal-lattice vectors. The disorder-induced nonperiodic
spatial modulations appear in the subsequent terms. The
Born approximation sums over all quantum paths which in-
clude a single-scattering event. In terms of the exact single-
particle eigenstates of a disordered graphene system, the
Born approximation to the LDOS accounts for the correc-
tions to the Bloch wave functions of the perfect crystal
which appear at first order when disorder is treated as a per-
turbation. In principle one can continue the perturbation se-
ries to include higher orders of the potential. For a single
scatterer, the full series is easily summed to construct the full
T matrix,12,31 a necessity when strong scattering leads to im-
purity resonance states. In this paper, motivated in part by
the absence of any experimental evidence for resonances in
typical graphene sheets and also by the possibility of extract-
ing more information about the sample from STM experi-
ments when this limit applies, we concentrate on the weak-
disorder limit.

A STM measurement naturally projects a quantum wave
function to one sublattice or the other and not, as implicitly
assumed by Bena and Kivelson,11 to a k-dependent Bloch
pseudospinor. This point is discussed in detail by Bena and
Montambaux.32 We restrict our attention, without loss of
generality, to evaluating the LDOS measured on the A sub-
lattice. This sublattice separation will allow distinction be-
tween the two types of scattering profiles as will be demon-
strated shortly. In the Born approximation, we may restrict
our attention to a single-site impurity potential which we
take to be located in the unit cell with lattice vector L=0; the
distributed potential case can be constructed simply by add-
ing contributions from different unit cells. The first-order
correction in the Green’s function is33
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GAA
�1� �r,r,�� = �G0�r − 0,��V�0��0/3G0�0 − r,���AA

= V�0��GAA
0 �r�GAA

0 �− r� � GAB
0 �r�GBA

0 �− r�� .

�5�

In Eq. �5� the first term describes the case of measuring and
scattering on the same sublattice and the second term the
case of measuring on one sublattice and scattering from the
other.

Electronic structure information is revealed most directly
by Fourier transforms �FTs� of the LDOS map. We evaluate
the momentum-space LDOS map first from graphene’s
�-orbital tight-binding model and later take the continuum
limit of these calculations to obtain analytic Dirac-model re-
sults. The tight-binding model Bloch Hamiltonian

H0k = 
 0 �k

�k
† 0

� ,

�k = t�eiky/�3 + 2eiky/2�3 cos�kx/2�� , �6�

where t is the hopping amplitude and we measure length in
units of the triangular lattice constant �not the carbon-carbon
distance� a=2.46 Å. The 2�2 unperturbed Matsubara
Green’s function is then �i�−H�−1.

The tight-binding model Hamiltonian �Eq. �6��, and hence
G0, is constructed in a representation in which Bloch state
basis functions have a phase difference k ·� between site 2
and site 1 in every unit cell. Here � is the vector from site A
to site B. It is critical that the same gauge is used when the
Fourier transform of the LDOS is constructed, in particular
in evaluating the Fourier transform of the LDOS on one
sublattice due to scattering from a site on the other,

�
R

e−iqRGAB
0 �R,��GBA

0 �− R,��

= �
R

e−iRq �
k,k��BZ

eik�R+��GAB
0 �k,��e−ik��R+��GBA

0 �k�,��

= �
k�BZ

ei�Q−q�·�GAB
0 �k,��GBA

0 �k − q + Q,�� . �7�

The exp�i�k−k�� ·�� in the second line results from the gauge
choice in which the origin is taken to be on the A sublattice.
In the last line we have noted that the lattice vector sum
yields a � function which restricts k−k� to be equal to q up
to a reciprocal-lattice vector Q. Q is therefore chosen such
that k−q+Q is in the momentum-space primitive cell. The
full Fourier-transformed LDOS is therefore given by

�NA�q,�� =
1

2�i
�

	=0,3
V	�q��
	�q,� − i�� − 
	�q,� + i��� ,


	�q,i�� = �
k

�GAA
0 �k,i��GAA

0 �k − q,i��

� eiQ�GAB
0 �k,i��GBA

0 �k − q + Q,i��� , �8�

where the retarded and advanced parts of 
 are obtained by
analytically continuing i�→�� i� and V	�q� is the Fourier-
transformed potential. Note that the factor e−iq� which ap-

pears in Eq. �7� is not present in Eq. �8�. This is due to a
“form factor” which is implicit in the Fourier transform of
the potential V�q�, i.e., due to the distance � between the two
atoms in the unit cell a phase of eiq� appears in the B com-
ponent of the potential. These expressions do not include the
�-orbital form factor which is expected to gradually decrease
momentum-space amplitudes at wave vectors outside the
Brillouin zone.

It is possible to describe any arrangement of impurities
from Eq. �8� by combining the results for �0 and �3 poten-
tials. For example, a single impurity on the A sublattice is
represented by �0+�3 �and therefore setting V0=V3�. It is
also possible to obtain the amplitude of the LDOS modula-
tions on the B sublattice from Eq. �8� by replacing labels
A↔B and reversing the direction of the basis vector, �→
−�. The single impurity results are given by


A
A�q� =

1

2
�
0

A�q� + 
3
A�q�� .


B
A�q� =

1

2
�
0

A�q� − 
3
A�q�� ,


A
B�q� =

1

2
�
0

B + 
3
B� =

1

2
��
0

A�� − �
3
A��� ,


B
B�q� =

1

2
�
0

B − 
3
B� =

1

2
��
0

A�� + �
3
A��� , �9�

where the subscript represents the position of the impurity
and the superscript is the sublattice on which the measure-
ment is done.

In this work we have assumed that the experimental data
are separated to the two sublattices before the Fourier trans-
form is performed. If the experimental data are Fourier trans-
formed without the sublattice separation the two diagonal
components of the perturbed Green’s function should be
added �GAA+GBB�. In the case of a single impurity �as stud-
ied by Bena12� the result obtained in this way is identical to
our �N0

A�q�. In the case of two identical impurities on the A
and B sites, the FT constructed from both the A and B sites
��N0

A+B� is equal to the real part of our �N0
A. In the case of

two equal and opposite impurities ��3 scattering� the combi-
nation of A and B sublattices cancels the real part and the
resulting �N3

A+B�q� is purely imaginary and is equal to the
imaginary part of our �N3

A�q�. These identifications of real
and imaginary parts apply, of course, when only one unit cell
of the lattice has scatterers, and the A site of this sublattice is
chosen as the origin of coordinates. In the more general case
of distributed disorder, which we expect applies to real ma-
terials, it is nevertheless true that the difference between A
and B sublattice maps arises purely from the 
3 response,
whereas the sum of the A and B maps will be dominated by
the 
0 response if the dominant disorder varies smoothly on
an atomic scale.

III. TIGHT-BINDING MODEL NUMERICAL RESULTS

Momentum-space LDOS maps constructed by evaluating
Eq. �8� from the full tight-binding Hamiltonian are illustrated
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in Fig. 1. These results are for identical amplitude scatterers,
the �N0�q� result, and opposite scatterers, the �N3�q� results,
in the unit cell at the origin. Results for a general scatterer
can be obtained by inserting its Fourier transform in Eq. �8�.
Efficient evaluation of the LDOS is achieved by Fourier
transforming the unperturbed Green’s function to real space
�through the fast Fourier transform algorithm�, multiplying
matrices appropriately, and then taking the imaginary part.
This quantity is then Fourier transformed back to momentum
space, mimicking the procedure used to analyze experimen-
tal data. A zoom in on intravalley and intervalley features in
Fig. 1 is given in the inset of Fig. 2 and in Fig. 4, respec-
tively.

These results are filled with interesting features which re-
flect the physics of graphene sheets, motivating the experi-
mental studies which this work aims to assist. Most obvious
is the expected appearance of clear separate features associ-
ated with intravalley and intervalley scatterings. Bloch states
near the Fermi energy of neutral graphene sheets appear
close to the two valley points, K= �4� /3,0� and K�
= �8� /3,0�, at which the � bonding and antibonding bands
meet. States with an energy � �measured from the neutral
system Fermi level� occur close to a circle centered on K or
K� with radius k�=� /v, where v is graphene’s Dirac-cone
velocity. Smooth disorder potentials contribute only to V0�q�
and have large amplitudes only for scattering within these
valleys. They therefore contribute to LDOS-map features
only near q=0 or reciprocal-lattice vectors. We see in Fig. 1
that the intraband 
0�q� features at q=2k�, associated with
scattering across a Dirac cone, are much weaker than the

corresponding features in 
3�q�. We also note that the inter-
valley features which appear in the LDOS map near wave
vectors ��K−K�� have an interesting angular variation
which is absent in the intravalley feature. Neither intraband
nor interband features are periodic under translation by a
reciprocal-lattice vector, as explained previously. Another
feature of the LDOS modulations which appears in the nu-
merical results is the structure in the vicinity of reciprocal-
lattice vectors, i.e., in the corners of the �red online� solid
hexagonal zone in Fig. 1. The amplitude of the modulations
near these points may be obtained from the modulations of
small momentum transfer through a 2� /3 rotation of the
B-atom scattering contribution. The above features may be
understood in the context of the Dirac model, presented in
Sec. IV.

IV. DIRAC-MODEL ANALYTIC RESULTS

One of the reasons for the excitement around graphene is
its low energy behavior. At two valley points in the Brillouin
zone the energy bands touch and the dispersion is linear. This
makes graphene a zero gap semiconductor whose low energy
Hamiltonian is a condensed-matter realization of the Dirac
model. Using the massless-Dirac model, we can achieve a
deeper understanding of the numerical results reported in
Fig. 1.

For our analytic calculations it is convenient to choose a
unit cell in momentum space which includes both valleys in
its interior. The more symmetric triangular lattice BZ has the
disadvantage of separating each valley into three pieces
which together appear at the six BZ corners. We choose in-
stead as a unit cell the parallelogram constructed from the
two reciprocal-lattice vectors: a�1= �2� ,2� /�3� and a�2
= �2� ,−2� /�3�. The valley points are then K= �4� /3,0� and
K�= �8� /3,0�. Linearizing the tight-binding Hamiltonian
around these points leads to

FIG. 1. �Color online� The real and imaginary parts of �N0/3�q�
represented in grayscale �dark is high� in momentum space. The
LDOS maps were constructed from graphene’s �-orbital tight-
binding model. These numerical results were obtained at energy
�=0.2t. The solid lines �red online� are a guide for the eyes con-
necting reciprocal-lattice vectors. The dashed lines �blue online� are
a guide for the eyes connecting intervalley features in the LDOS
map. The dashed lines also form the triangular lattice Brillouin-
zone boundary.

FIG. 2. �Color online� FT LDOS of 
0-type �dashed, blue on-
line� and 
3-type �solid, red online� scatterings, as a function of q
in units of 2� /v, around zero-momentum transfer. Note that the FT
is purely real and dependent only on q. The inset shows the func-
tions in momentum space �to be compared with the numerical data
presented in Fig. 1�.
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Hk
Dirac = v � 
 0 �kx + iky

�kx − iky 0
� , �10�

where the − ��� sign corresponds to the K �K�� valley and
v=�3t /2 is the quasiparticle velocity. The difference in sign
corresponds to a difference in sign in the pseudospin
chirality34,35 of the Bloch states at the two valleys which is
responsible, as we will explain below, for many of the quali-
tative features of the LDOS maps. The unperturbed Matsub-
ara Green’s function is therefore given by

G0�k,i�� =
1

�2 + k2 � 
 i� �kx + iky

�kx − iky i�
� . �11�

For convenience we have rescaled our momentum by the
velocity v. We may now evaluate 
0 and 
3 within the lin-
earized model.

A. Intravalley scattering

Here we use the same Green’s function for both the initial
and final states �i.e., the same chirality sign� and arrive at19


0/3�q� =� d2k

�2��2

− �2 � �kx + iky��kx − qx − iky + iqy�
��2 + k2���2 + �q − k�2�

,

�12�

where the + �−� sign corresponds to 
0 �
3�. The right-hand
side of Eq. �12� can be simplified with the Schwinger-
Feynman trick,36

=�
0

1

dx� d2k

�2��2

− �2 � �kx + iky��kx − qx − iky + iqy�
�k2 + �2 + �1 − x�q2 − 2k · q�1 − x��2

=�
0

1

dx� d2k

�2��2

− �2 � �k2 − x�1 − x�q2�
�k2 + ��2 , �13�

where �=�2+x�1−x�q2. Integrating over momenta, we find
that the terms with momentum independent numerator yield
�−�2x�1−x�q2� /4��, whereas the k2 numerator terms
yield 1+log�� /�� /4� where � is an ultraviolet cutoff that
arises in the dimensional regularization scheme.36 Integrating
over x we find that for 
0 the terms with momentum inde-
pendent numerators give −1 /2� so that


0�q� = −
1

4�
�2 −� dx log
 1

�2 + x�1 − x�q2��
=

− 1

4�
�2F
2�

q
� + i� + log
�2

�2�� , �14�

where

F�z� = �− z2 − 1 arctan
1

�− z2 − 1
. �15�

The physical quantity is given by

�N0
A�q� =

sgn���
2�2 Im�F
2i�

q �� . �16�

It is interesting to note that F vanishes when q=2�. This is
despite the fact that energy conservation leads to the require-

ment that the initial and final states be on the same contour
of constant energy with radius �. This property requires the
�−� sign in the k-independent term to cancel a singularity at
q=2�; the singularity does appear when the opposite sign
is taken in evaluating 
3. The absence of this singularity in
the intraband 
0 map is largely responsible for the qualita-
tive difference between intraband and interband maps.

The physics behind this cancellation can be understood
qualitatively as follows. We may evaluate the dominant con-
tribution to 
0/3 in terms of scattering between eigenstates of
the unperturbed system. These states are two vectors �pseu-
dospinors� of the form �k

†= �1, �e−i�k�, where the + �−� sign
corresponds to the positive �negative� energy band and �k
=arctan�ky /kx� near the K valley. Due to energy conservation
and to the sharpness of quasiparticles, the dominant scatter-
ing events involve on-shell states with energy �. The phase-
space integral for elastic scattering on the energy shell,

� d2q��� − vk���� − vk − q�

=� dqqd���� − ��� + vq cos����2 + v2q2 sin2����1/2�

=� dq
d�cos����

�1 − cos2���
��cos��� +

q

2�
�

=� dq
2���2� − vq�

v�4�2 − v2q2
, �17�

in turn places greatest weight on backscattering processes
with cos���=−vq /2�=−1. �For each q there is one relevant
k such that k=−�k−q�; in the second line we placed the x
axis on the k direction and replaced k by � to account for
the � function.� However the importance of these processes
also depends on the matrix element of �0/3 between the ini-
tial and final states,


0/3�q = 2�� � ��k�0/3�k−q� = 1 � ei��k−�−k� = 1 � ei�.

�18�

This factor vanishes when the positive sign is taken for the

0 case because pseudospinors with opposite momentum in
the same valley are orthogonal. The same effect is respon-
sible for the Klein-paradox effects in graphene transport
properties37 and led to a faster than usual decay of the Frie-
del oscillations in real space, as calculated by Cheianov and
Fal’ko14 and by Bena.12

As we have just shown, due to pseudospinor-related
matrix-element effects the 
0 scattering amplitude across a
Dirac cone within the same valley vanishes. In the case of 
3
scattering quite the opposite happens and the momentum in-
dependent terms in the numerator of Eq. �13� lead to a di-
vergence along q=2�. We may therefore neglect the non-
singular contribution and write
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3�q� = �
0

1

dx� d2k

�2��2

− �2 + x�1 − x�q2

�k2 + ��2

=
1

4�
�

0

1

dx
− �2 + x�1 − x�q2

�2 + x�1 − x�q2

=
1

4�
�1 + 2G
2�

q �� ,

G�z� =
z2

�− z2 − 1
arctan

1
�− z2 − 1

�19�

and the physical quantity is

�N3
A�q,�� = −

sgn���
2�2 Im�G
2i�

q �� . �20�

The above results lead to two very different FT LDOS pat-
terns around zero-momentum transfer, as shown in Fig. 2.
This may serve as a way to use experimental LDOS maps to
distinguish between 
0- and 
3-type potentials in a sample.

B. Intervalley scattering

In this section we consider the case of momentum transfer
K�−K+q, where q is small and therefore the initial and final
states are each in the vicinity of a valley however not the
same valley. This leads to the following expression:


0/3�q� =� d2k

�2��2

− �2 � �kx + iky��− kx + qx − iky + iqy�
��2 + k2���2 + �q − k�2�

,

�21�

where the sign in front of kx−qx has been reversed from Eq.
�12� since the chirality of the final state at k−q state is dif-
ferent from the chirality of the initial state at k. This sign
change leads to an angular dependent intensity peaked along
the contour at q=2�. Using the Schwinger-Feynman trick
with momentum shift as before we arrive at


0/3�q� = �
0

1

dx� d2k

�2��2

− �2 � x�1 − x��qx + iqy�2

�k2 + ��2 ,


0/3�q� =
1

4�
��1 � e2i�q�G
2�

q � � e2i�q� , �22�

where the function G�z� is defined as before and �q
=arctan�qy /qx�. Note that the physical quantity, �N�q ,��, is
obtained by analytic continuation of the frequency and has
both real and imaginary parts. On the contour defined by
q=2�, the real part of �N�q� has a sin2��q� or cos2��q�
angular dependence for �0- and �3-type scatterings, respec-
tively. The imaginary part varies as �sin�2�q� along the con-
tour. These expressions for the two types of scattering differ
in their orientation, explaining one of the principle features
of the tight-binding model momentum-space maps.

These results are plotted in Fig. 3. Note that the solutions
match the ones obtained numerically in the tight-binding
model �see enlarged features in Fig. 4�. In order to obtain the

full momentum-space unit cell, however, one should apply
the phase exp�i� ·Q� to parts of the unit cell which are out-
side of the Brillouin zone. This leads to a 2� /3 rotation
about q=0.

The LDOS modulations at q=2� may be understood
through the dominant scattering contribution as before. We
may use the same arguments as in the case of intravalley
scattering to show that the dominant process in 
0/3�K�−K
+q� has k=−�k−q+K�−K�, so that k and k−q are opposite
except for the shift in valley. The eigenvectors are now �k

†

= �1,e−i�k� and �k−q�† = �1,e−i�k−q� �, where �� is the angle in
the K� valley. In the K� valley the sign of kx is reversed �and
the chirality of the bands is reversed� so that the angle be-
comes �k�=�−�k. This leads to


0/3�q = 2�� � ��k�0/3�k−q� � = 1 � ei��k−�k−q� � = 1 � e2i�q.

�23�

The real and imaginary parts of this expression reproduce the
angular dependence of Fig. 3.

FIG. 3. The real and imaginary parts of the FT LDOS patterns
of 
0- and 
3-type scatterings, with momentum transfer around
K�−K= �−4� ,0�. Features around other intervalley scattering vec-
tors are obtained through 2� /3 rotations.

FIG. 4. FT LDOS—a zoom in around momentum transfer K�-K
taken in Fig. 1, to be compared with Fig. 3.
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C. Off-diagonal disorder

In Secs. I and III we have modeled an impurity as an
on-site potential. It is reasonable to assume that impurities
may induce a change in the hopping amplitude. Such an
effect can be realized, for example, by stretching of bonds
out of the graphene plane. In this paper we consider a hop-
ping amplitude suppression on three bonds around an impu-
rity on the A site. This perturbation is nonlocal, breaks the
sublattice symmetry, and is described by an off-diagonal po-
tential matrix.

Let us define the following perturbation Hamiltonian:

�H = �
r

�t�r��
�

�cr
†dr+� + dr+�

† cr� , �24�

where �t�r� is the change in hopping amplitude around the A
atom in unit cell r. The operators c and d annihilate an elec-
tron on the A and B sublattices, respectively. Writing the
perturbation in momentum space and with a pseudospinor
vector �†= �c† ,d†� we find

�H = �
q

�t�q��
k

�k
†��k,k − q��k−q,

��k,k − q� = 
 0 �k−q

�k
� 0

� . �25�

In the Born approximation this leads to
G�q ,��=�kG0�k ,����k ,k−q�G0�k−q ,�� such that

GAA�q,i�� = i��
k

�k2 + �k−q2

��2 + �k
2���2 + �k−q�

,

GBB�q,i�� = 2i��
k

�k
��k−q

��2 + �k
2���2 + �k−q�

. �26�

The numerical and analytical evaluation of the above expres-
sions is similar to that presented before. We mention, how-
ever, that this perturbation is a symmetric function of the bias
voltage � and therefore may be separated from the on-site
potential which produces antisymmetric functions. Since this
perturbation is centered around an A atom the LDOS mea-
sured on the A sublattices is symmetric in real space and
does not have an imaginary part when Fourier transformed.
On the B sublattice, the effects of intersublattice scattering
are seen and one is able to see both real and imaginary parts
with an angular dependent amplitude around intervalley scat-
tering vectors. When combining both A and B sublattices the
result is very similar to 
0�q ,�� which was presented in
Secs. IV A and IV B. In the linear approximation the off-
diagonal contribution is �Noff�q ,��=2��N0

A�q ,��.

V. SUMMARY AND DISCUSSION

We have obtained analytic expressions for STM
momentum-space LDOS maps in graphene using the

massless-Dirac equation model for this material. We find that
smooth disorder produces features near q=0 and reciprocal-
lattice vectors. The most interesting and surprising feature is
the absence of the backscattering peak which would be ex-
pected on the basis of scattering phase-space considerations.
The feature is absent because of the sublattice pseudospin
chirality of Dirac band states which causes disorder-induced
backscattering matrix elements to vanish, the same feature of
graphene which helps us to enhance its mobility. Atomic
length scale disorder leads to both q=0 features and to fea-
tures near the intervalley scattering wave vector. For these
features, pseudospin chirality does not cause backscattering
matrix elements to vanish and instead leads to an interesting
angular patterning of the on-shell peak in the LDOS map.
Our Dirac-model analytic results are in agreement with tight-
binding model numerical results. These results demonstrate
the potential of STM experiments to shed light on the char-
acter of disorder in a graphene sample.

In this paper we have not accounted for the influence of
electron-electron interactions on the tunneling DOS of a
graphene system. Indeed the potential of LDOS-map experi-
ments to provide a high-resolution probe of interaction ef-
fects in the one-particle Green’s function of graphene sheets
is a major motivation for undertaking these experiments. On
the basis of existing theory38,39 it appears that electron-
electron interactions alter the quasiparticle velocity, intro-
duce lifetime broadening, and also under some circum-
stances, introduce sidebands associated with plasmon
emission. In the present theory the LDOS map depends only
on energy relative to the Dirac point, whereas in an interact-
ing system the map will also depend on the ratio of the
energy to the Fermi energy. Although the role of interactions
must therefore be considered carefully in analyzing LDOS-
map experiments, the disorder and matrix-element consider-
ations explained here will still play a primary role. One role
played by electron-electron interactions will be that of
screening27,40 the external disorder potential, weakening its
strength. The weak-disorder theory explained here is more
likely to be qualitatively correct when the Fermi level lies
away from the Dirac point, so that the Fermi-level density of
states is larger, the screened potentials are weaker,27,41 and
the Born-approximation analysis is more accurate. The Born-
approximation analysis is probably invalid at small average
carrier densities where the carrier spatial distribution
appears42,43 highly inhomogeneous. LDOS-map experiments
should be interesting in both regimes.
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